
Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Probabilistic Tabled Logic Programming with
Application to Model Checking

C. R. Ramakrishnan

Stony Brook University

ICLP 2013

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 1 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Executable Specification of Operational Semantics

e1 → e′1
(e1 e2)→ (e′1 e2)

e2 → e′2
(v1 e2)→ (v1 e′2)

(λx . e1) v2 → [x 7→ v2]e1

step(app(E1, E2), app(E1P, E2)) :-

step(E1, E1P).

step(app(V1, E2), app(V1, E2P)) :-

isValue(V1),

step(E2, E2P).

step(app(lambda(X, E1), V2), E2) :-

isValue(V2),

subst(X, V2, E1, E2).

isValue(lambda(_, _)).

[Call-By-Value Lambda Calculus]

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 2 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Substitution

[x 7→ s]x = s
[x 7→ s]y = y if y 6= x
[x 7→ s](λy . t) = λy . [x 7→ s]t if x 6= y and y 6∈ fv(s)
[x 7→ s](t1 t2) = ([x 7→ s]t1) ([x 7→ s]t2)

This definition becomes complete only when we consider α-renaming.

We can program α-renaming explicitly, or better still. . .

With suitable restrictions on the way λ-terms are written,

represent variables in lambda-terms with logical variables, and
use the “standardization” done by resolution to perform the needed
α-renaming.

We used such a strategy to encode model checkers for the pi-calculus
[Yang et al, VMCAI’03].

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 3 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Substitution

[x 7→ s]x = s
[x 7→ s]y = y if y 6= x
[x 7→ s](λy . t) = λy . [x 7→ s]t if x 6= y and y 6∈ fv(s)
[x 7→ s](t1 t2) = ([x 7→ s]t1) ([x 7→ s]t2)

This definition becomes complete only when we consider α-renaming.

We can program α-renaming explicitly, or better still. . .

With suitable restrictions on the way λ-terms are written,

represent variables in lambda-terms with logical variables, and
use the “standardization” done by resolution to perform the needed
α-renaming.

We used such a strategy to encode model checkers for the pi-calculus
[Yang et al, VMCAI’03].

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 3 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Substitution

[x 7→ s]x = s
[x 7→ s]y = y if y 6= x
[x 7→ s](λy . t) = λy . [x 7→ s]t if x 6= y and y 6∈ fv(s)
[x 7→ s](t1 t2) = ([x 7→ s]t1) ([x 7→ s]t2)

This definition becomes complete only when we consider α-renaming.

We can program α-renaming explicitly, or better still. . .

With suitable restrictions on the way λ-terms are written,

represent variables in lambda-terms with logical variables, and
use the “standardization” done by resolution to perform the needed
α-renaming.

We used such a strategy to encode model checkers for the pi-calculus
[Yang et al, VMCAI’03].

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 3 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Executable Specification of Abstract Semantics

p = &q

p→ q

p = q q→ r
p→ r

p = *q q→ r r → s
p→ s

*p = q p→ r q→ s
r → s

pts(P,Q) :-

stmt(v(P), addr(Q)).

pts(P,R) :-

stmt(v(P), v(Q)),

pts(Q, R).

pts(P,S) :-

stmt(v(P), star(Q)),

pts(Q, R), pts(R, S).

pts(R, S) :-

stmt(star(P), v(Q)),

pts(P, R),

pts(Q, S).

[Anderson’s Context-Insensitive Points-To Analysis]

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 4 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Demand-Driven Analysis

Compute only the information necessary to determine the may-point-to set
of x . [Heinze et al., PLDI 2001]

Tabled query evaluation is naturally demand-driven, but . . .

Clauses of the form pts(R, S) :- stmt(star(P), v(Q)), . . .
lead to generate-and-test evaluation.

Trick: replicate points-to (pts) as pointed-to-by (ptb).

pts(R, S) :-

stmt(star(P), v(Q)),

pts(P, R),

pts(Q, S).

⇒

pts(R, S) :-

ptb(R, P),

stmt(star(P), v(Q)),

pts(Q, S).
[PPDP’05]

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 5 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Demand-Driven Analysis

Compute only the information necessary to determine the may-point-to set
of x . [Heinze et al., PLDI 2001]

Tabled query evaluation is naturally demand-driven, but . . .

Clauses of the form pts(R, S) :- stmt(star(P), v(Q)), . . .
lead to generate-and-test evaluation.

Trick: replicate points-to (pts) as pointed-to-by (ptb).

pts(R, S) :-

stmt(star(P), v(Q)),

pts(P, R),

pts(Q, S).

⇒

pts(R, S) :-

ptb(R, P),

stmt(star(P), v(Q)),

pts(Q, S).
[PPDP’05]

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 5 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Demand-Driven Analysis

Compute only the information necessary to determine the may-point-to set
of x . [Heinze et al., PLDI 2001]

Tabled query evaluation is naturally demand-driven, but . . .

Clauses of the form pts(R, S) :- stmt(star(P), v(Q)), . . .
lead to generate-and-test evaluation.

Trick: replicate points-to (pts) as pointed-to-by (ptb).

pts(R, S) :-

stmt(star(P), v(Q)),

pts(P, R),

pts(Q, S).

⇒

pts(R, S) :-

ptb(R, P),

stmt(star(P), v(Q)),

pts(Q, S).
[PPDP’05]

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 5 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Incremental Evaluation

Computing changes to query answers for definite programs when
rules/facts are added is relatively easy.

Semi-naive and tabling are naturally incremental w.r.t. addition of
clauses.

Computing changes when clauses are deleted is harder:

DRed [Gupta et al, SIGMOD’93], and similar algorithms in model
checking [Sokolsky & Smolka, CAV’94] and program analysis [e.g., Yur
et al, ICSE’99] have been proposed for this problem.
DRed is prohibitively expensive in practice.

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 6 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Incremental Evaluation (contd.)

Use of Support Graphs, to store dependency between query answers
and clauses/facts, makes DRed feasible [Saha & R., ICLP’03].

Application to incremental program analysis [Saha & R. PPDP’05]

Symbolic support graphs significantly reduce memory requirements for
certain classes of programs [Saha & R., ICLP’05].

Subsequent generalization to handle updates [ICLP’06], and Prolog
[PADL’06]

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 7 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Executable Specification of Semantic Equations

[[·]] is the smallest set such that:

% [[p]] = states satisfying prop. p.
[[p]] = {s | p ∈ AP(s)}

% Conjunction:
[[ϕ1 ∧ ϕ2]] = [[ϕ1]] ∩ [[ϕ2]]

% [[EF f]] =

% {s | ∃t. s
∗→ t and t ∈ [[f]]}

[[EFϕ]] = [[ϕ]]
∪{s | ∃t. s → t, t ∈ [[EFϕ]]}

...

models(S,prop(P)) :-

holds(S, P).

models(S,and(F1,F2)) :-

models(S, F1), models(S, F2).

models(S, ef(F)) :-

models(S, F).

models(S, ef(F)) :-

trans(S, T), models(T, ef(F)).

models(S, af(F)) :-

models(S, F).

models(S, af(F)) :-

findall(T, trans(S, T), L),

all_models(T, af(F)).

...

[Computation Tree Logic’s Semantics (Fragment)]
C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 8 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Model Checking and Program Analysis as Query Evaluation

Multi-Agent Systems

Parameterized Systems

Mobile Ad-Hoc Networks

Model Checkers
Infinite-State Systems

π-Calculus

Program Analyzers
Incremental Program Analyzers

Alias Analysis of C Programs

Bisimulation Checkers
Other Analyzers

Security Policy Analyzers

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 9 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Model Checking and Program Analysis as Query Evaluation

Multi-Agent Systems

Parameterized Systems

Mobile Ad-Hoc Networks

Model Checkers
Infinite-State Systems

π-Calculus
Probabilistic Systems Program Analyzers

Incremental Program Analyzers

Alias Analysis of C Programs

Bisimulation Checkers
Other Analyzers

Security Policy Analyzers

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 9 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Logic Programs

Program Rules

+

Facts

|= Query Answers

The PRISM language and system [Sato and Kameya ’97]

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 10 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Probabilistic Logic Programs

Program Rules

+

Probabilistic Facts

|= Query Answers

The PRISM language and system [Sato and Kameya ’97]

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 10 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Probabilistic Logic Programs

Program Rules

+

Probabilistic Facts

|= Query Answers

The PRISM language and system [Sato and Kameya ’97]

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 10 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

PRISM

A language for probabilistic logic programming with system for inference
and parameter learning (Sato et al, since ’99).

Logic programs with a set of probabilistic facts: msw(X, I, V),
where

X is a discrete-valued random process
V is a value generated by the random process
I is the instance number, distinguishing different trials.

Random variables generated by the same random process are i.i.d.

Random variables generated by distinct random processes are
independent.

Has a well-defined model-theoretic (distribution) semantics, and an
operational semantics based on tabled resolution.

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 11 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Distribution semantics

% “a” is a boolean random process
p(X) :- msw(a, 0, X),

msw(a, 1, Y),

X=Y.
values(a, [t,f]).

set sw(a, [0.3,0.7])

Worlds:
msw(a,0,t)

msw(a,1,t)

0.09
p(t)

msw(a,0,t)

msw(a,1,f)

0.21

msw(a,0,f)

msw(a,1,t)

0.21

msw(a,0,f)

msw(a,1,f)

0.49
p(f)

Outcomes of random processes
define worlds.

The probability of a world is
assigned based on the probabilities
of the outcomes in the world.

In each world, msws form a set of
logical (non-probabilistic) facts.

Distribution over least models:
the least model in each world is
assigned the probability of that
world.

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 12 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Distribution semantics

% “a” is a boolean random process
p(X) :- msw(a, 0, X),

msw(a, 1, Y),

X=Y.
values(a, [t,f]).

set sw(a, [0.3,0.7])

Worlds:
msw(a,0,t)

msw(a,1,t)

0.09
p(t)

msw(a,0,t)

msw(a,1,f)

0.21

msw(a,0,f)

msw(a,1,t)

0.21

msw(a,0,f)

msw(a,1,f)

0.49
p(f)

Outcomes of random processes
define worlds.

The probability of a world is
assigned based on the probabilities
of the outcomes in the world.

In each world, msws form a set of
logical (non-probabilistic) facts.

Distribution over least models:
the least model in each world is
assigned the probability of that
world.

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 12 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Distribution semantics

% “a” is a boolean random process
p(X) :- msw(a, 0, X),

msw(a, 1, Y),

X=Y.
values(a, [t,f]).

set sw(a, [0.3,0.7])

Worlds:
msw(a,0,t)

msw(a,1,t)

0.09

p(t)

msw(a,0,t)

msw(a,1,f)

0.21

msw(a,0,f)

msw(a,1,t)

0.21

msw(a,0,f)

msw(a,1,f)

0.49

p(f)

Outcomes of random processes
define worlds.

The probability of a world is
assigned based on the probabilities
of the outcomes in the world.

In each world, msws form a set of
logical (non-probabilistic) facts.

Distribution over least models:
the least model in each world is
assigned the probability of that
world.

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 12 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Distribution semantics

% “a” is a boolean random process
p(X) :- msw(a, 0, X),

msw(a, 1, Y),

X=Y.
values(a, [t,f]).

set sw(a, [0.3,0.7])

Worlds:
msw(a,0,t)

msw(a,1,t)

0.09

p(t)

msw(a,0,t)

msw(a,1,f)

0.21

msw(a,0,f)

msw(a,1,t)

0.21

msw(a,0,f)

msw(a,1,f)

0.49

p(f)

Outcomes of random processes
define worlds.

The probability of a world is
assigned based on the probabilities
of the outcomes in the world.

In each world, msws form a set of
logical (non-probabilistic) facts.

Distribution over least models:
the least model in each world is
assigned the probability of that
world.

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 12 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Distribution semantics

% “a” is a boolean random process
p(X) :- msw(a, 0, X),

msw(a, 1, Y),

X=Y.
values(a, [t,f]).

set sw(a, [0.3,0.7])

Models:
msw(a,0,t)

msw(a,1,t)

0.09
p(t)

msw(a,0,t)

msw(a,1,f)

0.21

msw(a,0,f)

msw(a,1,t)

0.21

msw(a,0,f)

msw(a,1,f)

0.49
p(f)

Outcomes of random processes
define worlds.

The probability of a world is
assigned based on the probabilities
of the outcomes in the world.

In each world, msws form a set of
logical (non-probabilistic) facts.

Distribution over least models:
the least model in each world is
assigned the probability of that
world.

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 12 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Probabilistic Logic Programs: Background

Logic-based representation of statistical models

Examples include BLPs (Kersting and De Raedt, ’00), PRMs
(Friedman et al, ’99), MLNs (Richarson and Domingos, ’06).
The underlying statistical network, derived from logical/statistical
specifications, is finite.

Statistical inference over proof structures

Conservative extension to traditional logic programs, with explicit or
implicit use of random variables and processes.
Examples include PRISM (Sato and Kameya, ’99), ICL (Poole, ’93),
CLP(BN) (Santos Costa et al, ’03), ProbLog (De Raedt et al, ’07),
LPAD (Vennekens et al, ’09).
In terms of expressive power, PRISM, ProbLog and LPAD coincide;
however, they use different inference procedures.

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 13 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Evaluation in PRISM — I

% Finite Mixture Model
q(Y) :- msw(a, 0, X),

msw(b(X), 0, Y).

values(a, [t,f]).

values(b(), [t,f]).

set sw(a, [0.3,0.7])

set sw(b(t), [0.6,0.4])

set sw(b(f), [0.5,0.5])

Explanations

q(t)

msw(a, t) msw(a, f)

msw(b(t), t) msw(b(f), t)

� �

@
@
@

�
�
�

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 14 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Evaluation in PRISM — I

% Finite Mixture Model
q(Y) :- msw(a, 0, X),

msw(b(X), 0, Y).

values(a, [t,f]).

values(b(), [t,f]).

set sw(a, [0.3,0.7])

set sw(b(t), [0.6,0.4])

set sw(b(f), [0.5,0.5])

Explanations and Probabilities

q(t)

msw(a, t) msw(a, f)

msw(b(t), t) msw(b(f), t)

� �

@
@
@

�
�
�

0.3

0.6

0.18

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 14 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Evaluation in PRISM — I

% Finite Mixture Model
q(Y) :- msw(a, 0, X),

msw(b(X), 0, Y).

values(a, [t,f]).

values(b(), [t,f]).

set sw(a, [0.3,0.7])

set sw(b(t), [0.6,0.4])

set sw(b(f), [0.5,0.5])

Explanations and Probabilities

q(t)

msw(a, t) msw(a, f)

msw(b(t), t) msw(b(f), t)

� �

@
@
@

�
�
�

0.3

0.6

0.7

0.5

0.18 0.35

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 14 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Evaluation in PRISM — I

% Finite Mixture Model
q(Y) :- msw(a, 0, X),

msw(b(X), 0, Y).

values(a, [t,f]).

values(b(), [t,f]).

set sw(a, [0.3,0.7])

set sw(b(t), [0.6,0.4])

set sw(b(f), [0.5,0.5])

Explanations and Probabilities

q(t)

msw(a, t) msw(a, f)

msw(b(t), t) msw(b(f), t)

� �

@
@
@

�
�
�

0.3

0.6

0.7

0.5

0.18 0.35

0.53

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 14 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Evaluation in PRISM — II

Explanation of an answer: At a high level, the set of msw’s used in a
derivation of the answer.

The probability of an explanation is the product of the probabilities of
random variables in the explanation.

If the msw’s in a derivation are all independent, then the probability of
the explanation can be computed without materializing it.

[Independence assumption]

The probability of an answer is the probability of the set of
explanations of the answer.

If explanations are pairwise mutually exclusive, then the probability of
the set of explanations is the sum of probabilities of each explanation.

[Mutual Exclusion assumption]
If the set of explanations is finite, then this sum can be effectively
computed.

[Finiteness assumption]

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 15 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Evaluation in PRISM — II

Explanation of an answer: At a high level, the set of msw’s used in a
derivation of the answer.

The probability of an explanation is the product of the probabilities of
random variables in the explanation.

If the msw’s in a derivation are all independent, then the probability of
the explanation can be computed without materializing it.

[Independence assumption]

The probability of an answer is the probability of the set of
explanations of the answer.

If explanations are pairwise mutually exclusive, then the probability of
the set of explanations is the sum of probabilities of each explanation.

[Mutual Exclusion assumption]
If the set of explanations is finite, then this sum can be effectively
computed.

[Finiteness assumption]

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 15 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Evaluation in PRISM — II

Explanation of an answer: At a high level, the set of msw’s used in a
derivation of the answer.

The probability of an explanation is the product of the probabilities of
random variables in the explanation.

If the msw’s in a derivation are all independent, then the probability of
the explanation can be computed without materializing it.

[Independence assumption]

The probability of an answer is the probability of the set of
explanations of the answer.

If explanations are pairwise mutually exclusive, then the probability of
the set of explanations is the sum of probabilities of each explanation.

[Mutual Exclusion assumption]
If the set of explanations is finite, then this sum can be effectively
computed.

[Finiteness assumption]

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 15 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Evaluation in PRISM — II

Explanation of an answer: At a high level, the set of msw’s used in a
derivation of the answer.

The probability of an explanation is the product of the probabilities of
random variables in the explanation.

If the msw’s in a derivation are all independent, then the probability of
the explanation can be computed without materializing it.

[Independence assumption]

The probability of an answer is the probability of the set of
explanations of the answer.

If explanations are pairwise mutually exclusive, then the probability of
the set of explanations is the sum of probabilities of each explanation.

[Mutual Exclusion assumption]
If the set of explanations is finite, then this sum can be effectively
computed.

[Finiteness assumption]

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 15 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Evaluation in PRISM — II

Explanation of an answer: At a high level, the set of msw’s used in a
derivation of the answer.

The probability of an explanation is the product of the probabilities of
random variables in the explanation.

If the msw’s in a derivation are all independent, then the probability of
the explanation can be computed without materializing it.

[Independence assumption]

The probability of an answer is the probability of the set of
explanations of the answer.

If explanations are pairwise mutually exclusive, then the probability of
the set of explanations is the sum of probabilities of each explanation.

[Mutual Exclusion assumption]

If the set of explanations is finite, then this sum can be effectively
computed.

[Finiteness assumption]

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 15 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Evaluation in PRISM — II

Explanation of an answer: At a high level, the set of msw’s used in a
derivation of the answer.

The probability of an explanation is the product of the probabilities of
random variables in the explanation.

If the msw’s in a derivation are all independent, then the probability of
the explanation can be computed without materializing it.

[Independence assumption]

The probability of an answer is the probability of the set of
explanations of the answer.

If explanations are pairwise mutually exclusive, then the probability of
the set of explanations is the sum of probabilities of each explanation.

[Mutual Exclusion assumption]
If the set of explanations is finite, then this sum can be effectively
computed.

[Finiteness assumption]

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 15 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Generalizations

PRISM’s inference procedure uses the Independence, Mutual
Exclusion and Finiteness assumptions to compute probabilities of
answers without materializing the explanations.

Inference mimics the best known algorithms for certain statistical
models (e.g. Viterbi alg. for HMMs).

ProbLog and PITA (an implementation of LPAD) use BDDs to
represent the set of explanations, and consequently remove
Independence and Mutual Exclusion assumptions.

Finiteness assumption is still needed since the BDDs need to be
effectively constructed.

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 16 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Generalizations

PRISM’s inference procedure uses the Independence, Mutual
Exclusion and Finiteness assumptions to compute probabilities of
answers without materializing the explanations.

Inference mimics the best known algorithms for certain statistical
models (e.g. Viterbi alg. for HMMs).

ProbLog and PITA (an implementation of LPAD) use BDDs to
represent the set of explanations, and consequently remove
Independence and Mutual Exclusion assumptions.

Finiteness assumption is still needed since the BDDs need to be
effectively constructed.

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 16 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Generalizations

PRISM’s inference procedure uses the Independence, Mutual
Exclusion and Finiteness assumptions to compute probabilities of
answers without materializing the explanations.

Inference mimics the best known algorithms for certain statistical
models (e.g. Viterbi alg. for HMMs).

ProbLog and PITA (an implementation of LPAD) use BDDs to
represent the set of explanations, and consequently remove
Independence and Mutual Exclusion assumptions.

Finiteness assumption is still needed since the BDDs need to be
effectively constructed.

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 16 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Generalizations

PRISM’s inference procedure uses the Independence, Mutual
Exclusion and Finiteness assumptions to compute probabilities of
answers without materializing the explanations.

Inference mimics the best known algorithms for certain statistical
models (e.g. Viterbi alg. for HMMs).

ProbLog and PITA (an implementation of LPAD) use BDDs to
represent the set of explanations, and consequently remove
Independence and Mutual Exclusion assumptions.

Finiteness assumption is still needed since the BDDs need to be
effectively constructed.

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 16 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Probabilistic Systems

System Definitions: Markov Chains (discrete- and continuous-time),
Markov Decision Processes, Probabilistic Automata, recursive versions
of some of the above, . . .

Property Specifications: PCTL, PCTL*, CSL, GPL, . . .

Systems: Prism, PreMo, UPPAAL-SMC, . . .

Systems have stochastic behavior

. . . in contrast to Statistical Model Checking where statistical (sampling)
techniques are used to infer properties of non-probabilistic systems
(with confidence bounds).

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 17 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Probabilistic Transition Systems in PRISM

Example Markov Chain

s
0

s
3

s
4

s
2

s
1

1

0.1

0.3 0.2

0.5

0.4

0.5

% Encoding as a Probabilistic LP

trans(S, I, T) :- msw(t(S), I, T).

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 18 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Probabilistic Transition Systems in PRISM

Example Markov Chain

s
0

s
3

s
4

s
2

s
1

1

0.1

0.3 0.2

0.5

0.4

0.5

% Encoding as a Probabilistic LP

trans(S, I, T) :- msw(t(S), I, T).

% Ranges

:- values(t(s0), [s0, s1, s2]).

:- values(t(s1), [s1, s3, s4]).

:- values(t(s4), [s3]).

% Distributions

set sw(t(s0), [0.5, 0.3, 0.2]).

set sw(t(s1), [0.4, 0.1, 0.5]).

set sw(t(s4), [1]).

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 18 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Probabilistic Transition Systems in PRISM

Example Markov Chain

s
0

s
3

s
4

s
2

s
1

1

0.1

0.3 0.2

0.5

0.4

0.5

% Encoding as a Probabilistic LP

trans(S, I, T) :- msw(t(S), I, T).

% Encoding of Reachability

reach(S, I, T) :-

trans(S, I, U),

reach(U, next(I), T).

reach(S, , S).

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 18 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Probabilistic Model Checking as Query Evaluation

s
0

s
3

s
4

s
2

s
1

1

0.1

0.3 0.2

0.5

0.4

0.5

trans(S, I, T) :-

msw(t(S), I, T).

reach(S, I, T) :-

trans(S, I, U),

reach(U, next(I), T).

reach(S, , S).

What is the probability of reaching
s3 via some path starting at s0?

|?- prob(reach(s0, 0, s3)).

Evaluation of the above query will
not terminate!

There are infinitely many
explanations for reach(s0, 0, s3)

Distribution semantics is well-defined
and gives the correct probability, but

PRISM/ProbLog/PITA cannot
evaluate this query.

“PIP” solves this problem [Gorlin, R.
& Smolka, ICLP’12].

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 19 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Probabilistic Model Checking as Query Evaluation

s
0

s
3

s
4

s
2

s
1

1

0.1

0.3 0.2

0.5

0.4

0.5

trans(S, I, T) :-

msw(t(S), I, T).

reach(S, I, T) :-

trans(S, I, U),

reach(U, next(I), T).

reach(S, , S).

What is the probability of reaching
s3 via some path starting at s0?

|?- prob(reach(s0, 0, s3)).

Evaluation of the above query will
not terminate!

There are infinitely many
explanations for reach(s0, 0, s3)

Distribution semantics is well-defined
and gives the correct probability, but

PRISM/ProbLog/PITA cannot
evaluate this query.

“PIP” solves this problem [Gorlin, R.
& Smolka, ICLP’12].

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 19 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Probabilistic Model Checking as Query Evaluation

s
0

s
3

s
4

s
2

s
1

1

0.1

0.3 0.2

0.5

0.4

0.5

trans(S, I, T) :-

msw(t(S), I, T).

reach(S, I, T) :-

trans(S, I, U),

reach(U, next(I), T).

reach(S, , S).

What is the probability of reaching
s3 via some path starting at s0?

|?- prob(reach(s0, 0, s3)).

Evaluation of the above query will
not terminate!

There are infinitely many
explanations for reach(s0, 0, s3)

Distribution semantics is well-defined
and gives the correct probability, but

PRISM/ProbLog/PITA cannot
evaluate this query.

“PIP” solves this problem [Gorlin, R.
& Smolka, ICLP’12].

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 19 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Probabilistic Model Checking as Query Evaluation

s
0

s
3

s
4

s
2

s
1

1

0.1

0.3 0.2

0.5

0.4

0.5

trans(S, I, T) :-

msw(t(S), I, T).

reach(S, I, T) :-

trans(S, I, U),

reach(U, next(I), T).

reach(S, , S).

What is the probability of reaching
s3 via some path starting at s0?

|?- prob(reach(s0, 0, s3)).

Evaluation of the above query will
not terminate!

There are infinitely many
explanations for reach(s0, 0, s3)

Distribution semantics is well-defined
and gives the correct probability, but

PRISM/ProbLog/PITA cannot
evaluate this query.

“PIP” solves this problem [Gorlin, R.
& Smolka, ICLP’12].

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 19 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Probabilistic Model Checking as Query Evaluation

s
0

s
3

s
4

s
2

s
1

1

0.1

0.3 0.2

0.5

0.4

0.5

trans(S, I, T) :-

msw(t(S), I, T).

reach(S, I, T) :-

trans(S, I, U),

reach(U, next(I), T).

reach(S, , S).

What is the probability of reaching
s3 via some path starting at s0?

|?- prob(reach(s0, 0, s3)).

Evaluation of the above query will
not terminate!

There are infinitely many
explanations for reach(s0, 0, s3)

Distribution semantics is well-defined
and gives the correct probability, but

PRISM/ProbLog/PITA cannot
evaluate this query.

“PIP” solves this problem [Gorlin, R.
& Smolka, ICLP’12].

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 19 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Probabilistic Model Checking as Query Evaluation

s
0

s
3

s
4

s
2

s
1

1

0.1

0.3 0.2

0.5

0.4

0.5

trans(S, I, T) :-

msw(t(S), I, T).

reach(S, I, T) :-

trans(S, I, U),

reach(U, next(I), T).

reach(S, , S).

What is the probability of reaching
s3 via some path starting at s0?

|?- prob(reach(s0, 0, s3)).

Evaluation of the above query will
not terminate!

There are infinitely many
explanations for reach(s0, 0, s3)

Distribution semantics is well-defined
and gives the correct probability, but

PRISM/ProbLog/PITA cannot
evaluate this query.

“PIP” solves this problem [Gorlin, R.
& Smolka, ICLP’12].

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 19 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Probabilistic Model Checking as Query Evaluation

s
0

s
3

s
4

s
2

s
1

1

0.1

0.3 0.2

0.5

0.4

0.5

trans(S, I, T) :-

msw(t(S), I, T).

reach(S, I, T) :-

trans(S, I, U),

reach(U, next(I), T).

reach(S, , S).

What is the probability of reaching
s3 via some path starting at s0?

|?- prob(reach(s0, 0, s3)).

Evaluation of the above query will
not terminate!

There are infinitely many
explanations for reach(s0, 0, s3)

Distribution semantics is well-defined
and gives the correct probability, but

PRISM/ProbLog/PITA cannot
evaluate this query.

“PIP” solves this problem [Gorlin, R.
& Smolka, ICLP’12].

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 19 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Explanations

s
0

s
3

s
4

s
2

s
1

1

0.1

0.3 0.2

0.5

0.4

0.5

trans(S, I, T) :-

msw(t(S), I, T).

reach(S, I, T) :-

trans(S, I, U),

reach(U, next(I), T).

reach(S, , S).

Explanations for reach(s0,0,s3):

msw(t(s0), 0, s1), msw(t(s1), next(0), s3).

msw(t(s0), 0, s0), msw(t(s0), next(0), s1),
msw(t(s1), next(next(0)), s3).

...

msw(t(s0), 0, s1), msw(t(s1), next(0), s1),
msw(t(s1), next(next(0)), s3).

...

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 20 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Explanations

s
0

s
3

s
4

s
2

s
1

1

0.1

0.3 0.2

0.5

0.4

0.5

trans(S, I, T) :-

msw(t(S), I, T).

reach(S, I, T) :-

trans(S, I, U),

reach(U, next(I), T).

reach(S, , S).

Note: prob(reach(s0,0,s3)) is same as
prob(reach(s0,H,s3)) for any H.

We can use a grammar to represent the set
of explanations for the abstracted query.

expl(reach(s0,H, s3)) −→
[msw(t(s0),H, s0)],
expl(reach(s0, next(H), s3)).

expl(reach(s0,H, s3)) −→
[msw(t(s0),H, s1)],
expl(reach(s1, next(H), s3)).

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 20 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Explanations

s
0

s
3

s
4

s
2

s
1

1

0.1

0.3 0.2

0.5

0.4

0.5

trans(S, I, T) :-

msw(t(S), I, T).

reach(S, I, T) :-

trans(S, I, U),

reach(U, next(I), T).

reach(S, , S).

Note: prob(reach(s0,0,s3)) is same as
prob(reach(s0,H,s3)) for any H.

We can use a grammar to represent the set
of explanations for the abstracted query.

expl(reach(s0,H, s3)) −→
[msw(t(s0),H, s0)],
expl(reach(s0, next(H), s3)).

expl(reach(s0,H, s3)) −→
[msw(t(s0),H, s1)],
expl(reach(s1, next(H), s3)).

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 20 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Explanations

s
0

s
3

s
4

s
2

s
1

1

0.1

0.3 0.2

0.5

0.4

0.5

trans(S, I, T) :-

msw(t(S), I, T).

reach(S, I, T) :-

trans(S, I, U),

reach(U, next(I), T).

reach(S, , S).

Note: prob(reach(s0,0,s3)) is same as
prob(reach(s0,H,s3)) for any H.

We can use a grammar to represent the set
of explanations for the abstracted query.

expl(reach(s0,H, s3)) −→
[msw(t(s0),H, s0)],
expl(reach(s0, next(H), s3)).

expl(reach(s0,H, s3)) −→
[msw(t(s0),H, s1)],
expl(reach(s1, next(H), s3)).

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 20 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Explanations

s
0

s
3

s
4

s
2

s
1

1

0.1

0.3 0.2

0.5

0.4

0.5

trans(S, I, T) :-

msw(t(S), I, T).

reach(S, I, T) :-

trans(S, I, U),

reach(U, next(I), T).

reach(S, , S).

expl(reach(s0,H, s3)) −→
[msw(t(s0),H, s0)],
expl(reach(s0, next(H), s3)).

expl(reach(s0,H, s3)) −→
[msw(t(s0),H, s1)],
expl(reach(s1, next(H), s3)).

is similar to the stochastic grammar:

S0
0.5−→ S0

S0
0.3−→ S1

whose probability is given by the least solu-
tion to the equation:
x0 = 0.5x0 + 0.3x1

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 20 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Temporally Well-Formed Programs

A probabilistic logic program with annotations of the form
temporal(p/n − i).

Example: temporal(reach/3-2)

reach is a temporal predicate
The second argument of an atom with root reach is its instance
argument.

For a rule defining a temporal predicate, the instance argument of the head
must be a subterm of instance arguments of every temporal body predicate.

Example: reach(S, I, T) :-

trans(S, I, U),

reach(U, next(I), T).

Instance arguments are not bound to non-instance arguments, or vice versa.

In explanation grammars of temporally well-formed programs, msw(r , t, x)
will always be independent of any msw derived from non-terminal expl(p)

if t is a proper subterm of p’s instance argument.

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 21 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Temporally Well-Formed Programs

A probabilistic logic program with annotations of the form
temporal(p/n − i).

Example: temporal(reach/3-2)

reach is a temporal predicate
The second argument of an atom with root reach is its instance
argument.

For a rule defining a temporal predicate, the instance argument of the head
must be a subterm of instance arguments of every temporal body predicate.

Example: reach(S, I, T) :-

trans(S, I, U),

reach(U, next(I), T).

Instance arguments are not bound to non-instance arguments, or vice versa.

In explanation grammars of temporally well-formed programs, msw(r , t, x)
will always be independent of any msw derived from non-terminal expl(p)

if t is a proper subterm of p’s instance argument.

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 21 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Factored Equation Diagrams

Not all explanation grammars can be translated directly to stochastic
grammars.

s
0

s
3

s
4

s
2

s
1

1

0.1

0.3 0.2

0.5

0.4

0.5

Consider the explanation grammar for
query

reach(s0, H, s3); reach(s0, H,

s4).

The grammar will have productions of
the form:
expl(reach(s0,H, s3); reach(s0,H, s4)) −→

expl(reach(s0,H, s3)).
expl(reach(s0,H, s3); reach(s0,H, s4)) −→

expl(reach(s0,H, s4)).

We can factor such grammars using Factored Explanation Diagrams
(FEDs), which are similar to BDDs.

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 22 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Structure of FEDs

FED is a labeled DAG with

tt and ff as leaf nodes

msw(r , h) is an n-ary node if r is a
random process with n possible
outcomes;

outgoing edges are labeled with the
outcomes.

expl(t, h) is a binary node;

outgoing edges are labeled 0 and 1.

If there is an edge from x1 to x2,
then x1 < x2 via a specially defined
partial order relation.

s1s0

1

ff tt

0 0 1

expl(reach(s0,s3),

next(H))

expl(reach(s1,s3),

next(H))

msw(t(s0), H)

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 23 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Operations on FEDs

Boolean operations “∧” and “∨” can be performed on FEDs along the
same line as on BDDs, with one significant change:

BDD operations are based on a total node order.

We only have a partial node order for FEDs.

When we recursively push operations down the diagram, we may
encounter incomparable nodes.

We then generate a placeholder merge node, and process merges
separately.

Note that msw nodes are always comparable; so a merge will involve
at least one expl node.

We expand (one of) the expl node(s) with its definition, and perform
the postponed operation.

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 24 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Operations on FEDs

Boolean operations “∧” and “∨” can be performed on FEDs along the
same line as on BDDs, with one significant change:

BDD operations are based on a total node order.

We only have a partial node order for FEDs.

When we recursively push operations down the diagram, we may
encounter incomparable nodes.

We then generate a placeholder merge node, and process merges
separately.

Note that msw nodes are always comparable; so a merge will involve
at least one expl node.

We expand (one of) the expl node(s) with its definition, and perform
the postponed operation.

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 24 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

FEDs to Equations

The probability of a set of explanations is computed by generating and solving a
set of equations from its FED.

FED for expl(reach(s0,s3), H):

s1s0

1

ff tt

0 0 1

expl(reach(s0,s3),

next(H))

expl(reach(s1,s3),

next(H))

msw(t(s0), H)

x0 = t00 ∗ x0
+t01 ∗ x1

t00 = 0.5
t01 = 0.3

FED for expl(reach(s1,s3), H):

ff tt

msw(t(s1), H)

s3

expl(reach(s3,s3), expl(reach(s4,s3),expl(reach(s1,s3),

1
0

1

01
0

s1 s4

next(H)) next(H))next(H))

x1 = t11 ∗ x1
+t13 ∗ x3
+t14 ∗ x4

t11 = 0.4
t13 = 0.1
t14 = 0.5

The least solution to these monotone polynomial equations gives the probability
of the set of explanations.

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 25 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

FEDs to Equations

The probability of a set of explanations is computed by generating and solving a
set of equations from its FED.

FED for expl(reach(s0,s3), H):

s1s0

1

ff tt

0 0 1

expl(reach(s0,s3),

next(H))

expl(reach(s1,s3),

next(H))

msw(t(s0), H)

x0 = t00 ∗ x0
+t01 ∗ x1

t00 = 0.5
t01 = 0.3

FED for expl(reach(s1,s3), H):

ff tt

msw(t(s1), H)

s3

expl(reach(s3,s3), expl(reach(s4,s3),expl(reach(s1,s3),

1
0

1

01
0

s1 s4

next(H)) next(H))next(H))

x1 = t11 ∗ x1
+t13 ∗ x3
+t14 ∗ x4

t11 = 0.4
t13 = 0.1
t14 = 0.5

The least solution to these monotone polynomial equations gives the probability
of the set of explanations.

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 25 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Probabilistic Computation Tree Logic (PCTL)

PCTL is a logic for specifying properties of Probabilistic Transition
Systems (Discrete-Time Markov Chains), where a subset of
predefined propositions, A, hold at states.

State formulas, ϕ, defined over individual states:

A | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 |
Pr(ψ) > b | Pr(ψ) ≥ b

Path formulas, ψ, defined over execution paths:

φ1 U φ2 | X φ

State formulas are non-probabilistic; path formulas have associated
probabilities.

Used as the property specification language by many systems,
including the Prism Model Checker.

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 26 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Encoding the PCTL Model Checker

% State Formulae % Path Formulae
models(S, prop(A)) :-

holds(S, A).

models(S, neg(SF)) :-

not models(S, SF).

models(S, and(SF1, SF2)) :-

models(S, SF1),

models(S, SF2).

models(S, pr(PF, gt, B)) :-

prob(pmodels(S, PF), P),

P > B.

models(S, pr(PF, geq, B)) :-

prob(pmodels(S, PF), P),

P >= B.

pmodels(S, PF) :-

pmodels(S, PF, _).

:- table pmodels/3.

pmodels(S, until(SF1, SF2), H) :-

models(S, SF2).

pmodels(S, until(SF1, SF2), H) :-

models(S, SF1),

trans(S, H, T),

pmodels(T, until(SF1, SF2), next(H)).

pmodels(S, next(SF), H) :-

trans(S, H, T),

models(T, SF).

temporal(pmodels/3-3).

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 27 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Prototype: PCTL Model Checking

5 processes:

 0.01

 0.1

 1

 10

 2 3 4 5 6

C
P

U
 T

im
e
 i
n
 s

e
c
o
n
d
s

No. of slots

Prism MC

PIP-full

6 processes:

 0.01

 0.1

 1

 10

 100

 2 3 4 5

C
P

U
 T

im
e
 i
n
 s

e
c
o
n
d
s

No. of slots

Prism MC

PIP-full

Time performance is compared with that
of the Prism Model Checker.

System specified using Prism’s modeling
language (Reactive Modues, RM).

Markov Chain derived from direct logical
encoding of the semantics of RM.

Chosen benchmark:

System: Synchronous Leader Election
protocol
Property: “eventually a leader is
elected” (reachability).

Model checking times are within a factor
of 3 (note log scale).

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 28 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Reactive Probabilistic Labeled Transition Systems (RPLTS)

s
5

s
1

s
6

s
4

s
2

s
3

a

3/43/4

1/4 1/4

a

a

aa

b c

Automata has finite number of
states.

Each state offers a finite number
of actions, each with a distinct
label.

Each action has a distribution of
states: taking an action chooses a
destination state according to the
given distribution.

Actions are triggered by an
external agent; the system reacts
to actions.

[Cleaveland, Iyer & Narasimha, TCS’05]

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 29 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Generalized Probabilistic Logic (GPL)

[Cleaveland, Iyer & Narasimha, TCS’05]

An expressive, mu-calculus-based, logic for branching-time
probabilistic processes.

Strictly more expressive than PCTL*.

Can be used to construct model checkers for recursive Markov Chains.

Thus far, no model checker was available!!

We can construct a model checker for GPL by directly encoding its
semantics as a probabilistic logic program.

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 30 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

GPL

Usual mu-calculus-like modalities and fixed points (called “state
formulae”) in GPL.

Fuzzy formulae, ψ, have a probabilistic interpretation: each formula’s
truth value has a probability associated with it.

ψ = ψ ∨ ψ | ψ ∧ ψ | 〈a〉ψ | [a]ψ | φ | X

State formulae, φ, have a boolean interpretation:

φ = φ ∨ φ | · · · | pr>Bψ | pr≥Bψ | · · · propositions . . .

Alternation-free fixed point equations of the form X =µ ψ and
X =ν ψ.

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 31 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

GPL Model Checker

%% pmodels(S, PF, H): S is in the model of fuzzy formula PF at or after instant H
%% smodels(S, SF): S is in the model of state formula SF

pmodels(S, sf(SF), H) :-

smodels(S, SF).

pmodels(S, and(F1,F2), H) :-

pmodels(S, F1, H),

pmodels(S, F2, H).

pmodels(S, or(F1,F2), H) :-

pmodels(S, F1, H);

pmodels(S, F2, H).

pmodels(S, diam(A, F), H) :-

action(S, A, SW),

msw(SW, H, T),

pmodels(T, F, [T,SW|H]).

pmodels(S, box(A, F), H) :-

findall(SW, action(S,A,SW), L),

all_pmodels(L, S, F, H).

pmodels(S, form(X), H) :-

tabled_pmodels(S, X, H1), H=H1.

all_pmodels([], _, _, _H).

all_pmodels([SW|Rest], S, F, H) :-

msw(SW, H, T),

pmodels(T,F,[T,SW|H]),

all_pmodels(Rest, S, F, H).

:- table tabled_pmodels/3.

tabled_pmodels(S,X,H) :-

fdef(X, lfp(F)),

pmodels(S, F, H).

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 32 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Recursive Markov Chains (RMCs)

Markov chains with calls and returns [Etessami & Yannakakis, 2005, . . .]

2/3

1/4 1/4

1/2

1

1/3
1/3

1/3

1/3

1

en

ex
1

ex
2u

z

b' : A
1

b' : A'
2

en'

ex'
1

ex'
2

1/4

3/4 3/5

2/5

2/3

1/3

1

1

1

v

b
1

b : A'
1

A'A

Probabilistic Push-Down Systems [Kucera, Esparza & Mayr, 2006]

PreMo system [Wojtczak & Etessami, 2008]

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 33 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Reachability in RMCs

Transform into a Reactive Probabilistic LTS:

2/3

1/4

1

1/2

1/4

1/3
1/3

1/3

1/3

3/4

1/4

1

3/5

2/5

2/3

1

1/3

1

1

r
1

r
2

r
1

r
2

r
1

r
2

c c

c

e
1

e
1

e
2

e
2

en

b
1

u

z

ex
2

ex
1

en'

b'
1

b'
2

v

ex'
2

ex'
1

Labels on probabilistic transitions are all p (omitted in figure).

Check reachability using the following GPL formula:

Xi : eventually exit ex i is reached:

Xi =µ 〈ei 〉tt ∨ 〈p〉Xi

∨ (〈c〉X1 ∧ 〈r1〉Xi)
∨ (〈c〉X2 ∧ 〈r2〉Xi)

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 34 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Markov Decision Processes (MDPs)

MDP looks very similar to an RPLTS: actions on states that have a
distribution of destination states.

Semantics is different in two ways:

States have “rewards”, and induce rewards on paths.
Schedulers dictate actions taken at each state.

Interesting problem: find an optimal scheduler that maximizes the
expected reward.

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 35 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Committed Choice

A scheduler commits an MDP to take a specific action at some point
in its run.

Analogous to msw in PRISM, we introduce nd(X, I, V) to choose
from a set and commit to that choice.

X is a discrete-valued choice process
V is a value generated by the choice process
I is the instance number.

Example: nd(s2, 0, X) with values(s2, [b,c]) will X to b in one
set of worlds, and to c in another.

Distribution semantics is naturally extended: the meaning of a
program is a distribution of sets of models.

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 36 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Committed Choice (contd.)

q(Y) :- nd(f, 0, X),

msw(X, 0, Y).

values(f, [a,b]).

values(a, [t,f]).

values(b, [t,f]).

set_sw(a, [0.3, 0.7])

set_sw(b, [0.6, 0.4])

?- prob(q(t), P).

P = 0.3

;

P = 0.6

Probability of an answer is
computed separately for each
distinct set of committed choices.

For recursive programs (MDPs),
each set of committed choices will
yield a set of linear equations,
whose least solution will be the
corresponding probability.

Expected rewards can be
computed analogously.

We can find optimal probabilities
(and, similarly, optimal expected
reward) by pushing a max

operation into the equations
themselves.

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 37 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Approximate Inference

Current, Preliminary Work, on MCMC-based Sampling

Monte-Chain Monte Carlo: walk though the possible worlds.

Gibbs sampler: walk by resampling one of the random variables in the
current state.

In our case, we consider a set of possible worlds as a state in the
Markov Chain. Naive method:

Generate a sample derivation. Its msws define a set of possible worlds.
Choose an msw and resample; find a derivation consistent with the new
set of possible worlds.
The set of msws in the new derivation forms the next state in the chain.

Using explanations instead of derivations makes this method more
complex ([Moldovan et al, ECSQARU’13])

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 38 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Approximate Inference for Conditional Queries

Naive method: use Metropolis-Hastings and reject samples
inconsistent with evidence.

Better methods: Adapt sampling to not generate inconsistent
examples in the first place.

Adapt msw distributions to minimize generation of samples inconsistent
with evidence [e.g. Mansinghka ’09].
Adapt the Markov Chain based on prior rejections to focus on
consistent part of the state space [classical adaptive MCMC].

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 39 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Current and Future Work

?
Structure Learning (ILP)

Sampling-Based Inference Different Forms of Uncertainty
Expectations

“Stratification”

Decision Support / Planning
Statistical Model Checking

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 40 / 41

Inference Rules Probabilistic LP Inference for Model Checking Probabilistic Model Checking

Co-Authors

Samik Basu

Yifei Dong

Vic Du

Andrey Gorlin

Md. Asiful Islam

Narayan Kumar

Giri Pemmasani

Bob Pokorny

Arun Nampally

I. V. Ramakrishnan

Y. S. Ramakrishna

Abhik Roychoudhury

Dipti Saha

Beata Sarna-Starosta

Anu Singh

Scott Smolka

Scott Stoller

Terry Swift

David Warren

Ping Yang

C. R. Ramakrishnan Probabilistic Tabled Logic Programming ICLP 2013 41 / 41

	Inference Rules
	Probabilistic Logic Programming
	Inference for Model Checking
	Probabilistic Model Checking

