Probabilistic LP 0000000

Inference Rules

•00000000

Inference for Model Checking

Probabilistic Model Checking

ICLP 2013

1 / 41

Probabilistic Tabled Logic Programming with Application to Model Checking

C. R. Ramakrishnan

Stony Brook University

ICLP 2013

C. R. Ramakrishnan

Probabilistic Tabled Logic Programming

Probabilistic LP 0000000

Inference Rules

00000000

Inference for Model Checking

Probabilistic Model Checking

Executable Specification of Operational Semantics

$$rac{e_1
ightarrow e_1^\prime}{(e_1 \, \, e_2)
ightarrow (e_1^\prime \, \, e_2)}$$

$$egin{array}{c} e_2
ightarrow e_2' \ \hline (v_1 \, \, e_2)
ightarrow (v_1 \, \, e_2') \end{array}$$

$$(\lambda x. e_1) \quad v_2 \rightarrow [x \mapsto v_2]e_1$$

step(app(E1, E2), app(E1P, E2)) : step(E1, E1P).

step(app(V1, E2), app(V1, E2P)) : isValue(V1),
 step(E2, E2P).

step(app(lambda(X, E1), V2), E2) : isValue(V2),
 subst(X, V2, E1, E2).

isValue(lambda(_, _)).

[Call-By-Value Lambda Calculus]

Inference Rules	Probabilistic LP 0000000	Inference for Model Checking	Probabilistic Model Checking

Substitution

・ロト ・聞ト ・ヨト ・ヨト

Inference Rules	Probabilistic LP 0000000	Inference for Model Checking	Probabilistic Model Checking
<u> </u>			

Substitution

- This definition becomes complete only when we consider α -renaming.
- We can program α -renaming explicitly, or better still...

Inference Rules	Probabilistic LP 0000000	Inference for Model Checking	Probabilistic Model Checking

Substitution

- This definition becomes complete only when we consider α -renaming.
- We can program α -renaming explicitly, or better still...
- With suitable restrictions on the way λ -terms are written,
 - represent variables in lambda-terms with logical variables, and
 - use the "standardization" done by resolution to perform the needed $\alpha\text{-renaming.}$
- We used such a strategy to encode model checkers for the *pi*-calculus [Yang et al, VMCAI'03].

ICLP 2013

3 / 41

Inference Rules	Probabilistic LP	Inference for Model Checking	Pro
00000000			

Probabilistic Model Checking

Executable Specification of Abstract Semantics

$\frac{\mathbf{p} = \&\mathbf{q}}{\mathbf{p} \to \mathbf{q}}$	<pre>pts(P,Q) :- stmt(v(P), addr(Q)).</pre>
$\frac{\mathbf{p} = \mathbf{q} \mathbf{q} \to \mathbf{r}}{\mathbf{p} \to \mathbf{r}}$	<pre>pts(P,R) :- stmt(v(P), v(Q)), pts(Q, R).</pre>
$\frac{\mathbf{p} = \mathbf{*q} \mathbf{q} \to \mathbf{r} \mathbf{r} \to \mathbf{s}}{\mathbf{p} \to \mathbf{s}}$	<pre>pts(P,S) :- stmt(v(P), star(Q)), pts(Q, R), pts(R, S).</pre>
$\frac{*p = q p \to r q \to s}{r \to s}$	<pre>pts(R, S) :- stmt(star(P), v(Q)), pts(P, R), pts(Q, S).</pre>

[Anderson's Context-Insensitive Points-To Analysis]

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

∃ →

Demand-Driven Analysis

Compute only the information necessary to determine the *may-point-to* set of x. [Heinze et al., PLDI 2001]

• Tabled query evaluation is naturally demand-driven, but ...

Image: A matrix

.

Demand-Driven Analysis

Inference Rules

000000000

Compute only the information necessary to determine the *may-point-to* set of x. [Heinze et al., PLDI 2001]

- Tabled query evaluation is naturally demand-driven, but ...
- Clauses of the form pts(R, S) :- stmt(star(P), v(Q)), ... lead to generate-and-test evaluation.

イロト イ押ト イヨト イヨト

Demand-Driven Analysis

Compute only the information necessary to determine the *may-point-to* set of x. [Heinze et al., PLDI 2001]

- Tabled query evaluation is naturally demand-driven, but ...
- Clauses of the form pts(R, S) :- stmt(star(P), v(Q)), ... lead to generate-and-test evaluation.
- Trick: replicate *points-to* (pts) as *pointed-to-by* (ptb).
 pts(R, S) : stmt(star(P), v(Q)),
 pts(P, R),
 pts(Q, S).
 pts(Q, S).

イロト 不得下 イヨト イヨト

Incremental Evaluation

- Computing changes to query answers for definite programs when rules/facts are *added* is relatively easy.
 - Semi-naive and tabling are naturally incremental w.r.t. addition of clauses.
- Computing changes when clauses are *deleted* is harder:
 - DRed [Gupta et al, SIGMOD'93], and similar algorithms in model checking [Sokolsky & Smolka, CAV'94] and program analysis [e.g., Yur et al, ICSE'99] have been proposed for this problem.
 - DRed is prohibitively expensive in practice.

Probabilistic Model Checking

Incremental Evaluation (contd.)

- Use of Support Graphs, to store dependency between query answers and clauses/facts, makes DRed feasible [Saha & R., ICLP'03].
- Application to incremental program analysis [Saha & R. PPDP'05]
- *Symbolic* support graphs significantly reduce memory requirements for certain classes of programs [Saha & R., ICLP'05].
- Subsequent generalization to handle updates [ICLP'06], and Prolog [PADL'06]

Inference Rules

000000000

イロト イ押ト イヨト イヨト

Probabilistic LP

Inference for Model Checking

Probabilistic Model Checking

8 / 41

Executable Specification of Semantic Equations

[.] is the smallest set such that:

% $\llbracket p \rrbracket$ = states satisfying prop. p. $\llbracket p \rrbracket = \{ s \mid p \in AP(s) \}$

% Conjunction: $\llbracket \varphi_1 \land \varphi_2 \rrbracket = \llbracket \varphi_1 \rrbracket \cap \llbracket \varphi_2 \rrbracket$

[EF f] =% { $s \mid \exists t. s \xrightarrow{*} t \text{ and } t \in \llbracket f \rrbracket$ } $\llbracket EF\varphi \rrbracket = \llbracket \varphi \rrbracket$ $\cup \{ s \mid \exists t. \ s \to t, t \in \llbracket EF \varphi \rrbracket \}$

models(S,prop(P)) :holds(S, P).

```
models(S,and(F1,F2)) :-
    models(S, F1), models(S, F2).
```

models(S, ef(F)) :models(S, F). models(S, ef(F)) :trans(S, T), models(T, ef(F)).

```
models(S, af(F)) :-
    models(S, F).
models(S, af(F)) :-
    findall(T, trans(S, T), L),
    all_models(T, af(F)).
```

[Computation Tree Logic's Semantics (Fragment)] Probabilistic Tabled Logic Programming **ICLP 2013**

. . .

÷

Probabilistic LP 0000000 Inference for Model Checking

Probabilistic Model Checking

Model Checking and Program Analysis as Query Evaluation

Mobile Ad-Hoc Networks

Parameterized Systems

Multi-Agent Systems Model Checkers

Infinite-State Systems

 π -Calculus

Incremental Program Analyzers Program Analyzers Alias Analysis of C Programs

Bisimulation Checkers Other Analyzers Security Policy Analyzers

C. R. Ramakrishnan

Probabilistic Tabled Logic Programming

ICLP 2013 9 / 41

Probabilistic LP 0000000 Inference for Model Checking

Probabilistic Model Checking

Model Checking and Program Analysis as Query Evaluation

Mobile Ad-Hoc Networks Parameterized Systems *Multi-Agent Systems*

Model Checkers

Infinite-State Systems

 π -Calculus **Probabilistic Systems**

Incremental Program Analyzers Program Analyzers Alias Analysis of C Programs

Bisimulation Checkers Other Analyzers Security Policy Analyzers

ICLP 2013 9 / 41

Program Rules

+

Facts

Query Answers

(日) (同) (三) (三)

Probabilistic LP

Inference for Model Checking

Probabilistic Model Checking

Probabilistic Logic Programs

Program Rules

The PRISM language and system [Sato and Kameya '97]

Image: Image:

ICLP 2013 10 / 41

E ▶.

Probabilistic LP

Inference for Model Checking

Probabilistic Model Checking

Probabilistic Logic Programs

Program Rules

The PRISM language and system [Sato and Kameya '97]

Image: Image:

ICLP 2013 10 / 41

Inference Rules	Probabilistic LP 0●00000	Inference for Model Checking	Probabilistic Model Checking
PRISM			

A language for probabilistic logic programming with system for inference and parameter learning (Sato et al, since '99).

- Logic programs with a set of **probabilistic facts**: msw(X, I, V), where
 - X is a discrete-valued random process
 - V is a value generated by the random process
 - I is the *instance number*, distinguishing different trials.
- Random variables generated by the same random process are i.i.d.
- Random variables generated by distinct random processes are independent.
- Has a well-defined model-theoretic (*distribution*) semantics, and an operational semantics based on tabled resolution.

Inference Rules	Probabilistic LP 00●0000	Inference for Model Checking	Probabilistic Model Checking

Distribution semantics

Probabilistic Model Checking

Distribution semantics

Worlds:

msw(a,0,t)	msw(a,0,t)
msw(a,1,t)	msw(a,1,f)
msw(a,0,f)	msw(a,0,f)
msw(a,1,t)	msw(a,1,f)

• Outcomes of random processes define worlds.

★ ∃ >

Probabilistic Model Checking

ICLP 2013

12 / 41

Distribution semantics

Worlds:

msw(a,0,t)	msw(a,0,t)
msw(a,1,t)	msw(a,1,f)
0.09	0.21
msw(a,0,f)	msw(a,0,f)
msw(a,1,t)	msw(a,1,f)
0.21	0.49

- Outcomes of random processes define worlds.
- The probability of a world is assigned based on the probabilities of the outcomes in the world.

Probabilistic Model Checking

Distribution semantics

Worlds:

msw(a,0,t)	msw(a,0,t)
msw(a,1,t)	msw(a,1,f)
0.09	0.21
msw(a,0,f)	msw(a,0,f)
msw(a,1,t)	msw(a,1,f)
0.21	0.49

- Outcomes of random processes define worlds.
- The probability of a world is assigned based on the probabilities of the outcomes in the world.
- In each world, msws form a set of logical (non-probabilistic) facts.

Probabilistic Model Checking

Distribution semantics

Models:

msw(a,0,t) msw(a,1,t) 0.09	msw(a,0,t) msw(a,1,f) 0.21
p(t)	0.21
msw(a,0,f)	msw(a,0,f)
msw(a,1,t)	msw(a,1,f)
0.21	0.49
	p(f)

- Outcomes of random processes define worlds.
- The probability of a world is assigned based on the probabilities of the outcomes in the world.
- In each world, msws form a set of logical (non-probabilistic) facts.
- Distribution over least models: the least model in each world is assigned the probability of that world.

Probabilistic Logic Programs: Background

- Logic-based representation of statistical models
 - Examples include BLPs (Kersting and De Raedt, '00), PRMs (Friedman et al, '99), MLNs (Richarson and Domingos, '06).
 - The underlying statistical network, derived from logical/statistical specifications, is finite.
- Statistical inference over proof structures
 - Conservative extension to traditional logic programs, with explicit or implicit use of random variables and processes.
 - Examples include PRISM (Sato and Kameya, '99), ICL (Poole, '93), CLP(BN) (Santos Costa et al, '03), ProbLog (De Raedt et al, '07), LPAD (Vennekens et al, '09).
 - In terms of expressive power, PRISM, ProbLog and LPAD coincide; however, they use different inference procedures.

A D > A A P >

Inference Rules

Probabilistic LP

Inference for Model Checking

Probabilistic Model Checking

Evaluation in PRISM — I

set_sw(a, [0.3,0.7])

set_sw(b(t), [0.6,0.4])
set_sw(b(f), [0.5,0.5])

- 4 3 6 4 3 6

Probabilistic LP

Inference for Model Checking

Probabilistic Model Checking

Evaluation in PRISM — I

values(a, [t,f]). values(b(_), [t,f]). set_sw(a, [0.3,0.7]) set_sw(b(t), [0.6,0.4]) set_sw(b(f), [0.5,0.5]) Explanations and Probabilities

A D > A A P >

Probabilistic LP

Inference for Model Checking

Probabilistic Model Checking

Evaluation in PRISM — I

```
values(a, [t,f]).
values(b(_), [t,f]).
set_sw(a, [0.3,0.7])
set_sw(b(t), [0.6,0.4])
set_sw(b(f), [0.5,0.5])
```

Explanations and Probabilities

A D > A A P >

Probabilistic LP

Inference for Model Checking

Probabilistic Model Checking

Evaluation in PRISM — I

values(a, [t,f]). values(b(_), [t,f]). set_sw(a, [0.3,0.7]) set_sw(b(t), [0.6,0.4]) set_sw(b(f), [0.5,0.5]) Explanations and Probabilities

A D > A A P >

• *Explanation* of an answer: At a high level, the set of msw's used in a derivation of the answer.

(日) (同) (三) (三)

- *Explanation* of an answer: At a high level, the set of msw's used in a derivation of the answer.
- The probability of an explanation is the product of the probabilities of random variables in the explanation.

- * E > * E

- *Explanation* of an answer: At a high level, the set of msw's used in a derivation of the answer.
- The probability of an explanation is the product of the probabilities of random variables in the explanation.
 - If the msw's in a derivation are all independent, then the probability of the explanation can be computed without materializing it.

[Independence assumption]

イロト イ押ト イヨト イヨト

- *Explanation* of an answer: At a high level, the set of msw's used in a derivation of the answer.
- The probability of an explanation is the product of the probabilities of random variables in the explanation.
 - If the msw's in a derivation are all independent, then the probability of the explanation can be computed without materializing it.

[Independence assumption]

.

• The probability of an answer is the probability of the set of explanations of the answer.

Inference Rules

- *Explanation* of an answer: At a high level, the set of msw's used in a derivation of the answer.
- The probability of an explanation is the product of the probabilities of random variables in the explanation.
 - If the msw's in a derivation are all independent, then the probability of the explanation can be computed without materializing it.

[Independence assumption]

- The probability of an answer is the probability of the set of explanations of the answer.
 - If explanations are pairwise mutually exclusive, then the probability of the set of explanations is the sum of probabilities of each explanation.

[Mutual Exclusion assumption]

< ロト < 同ト < ヨト < ヨト

Evaluation in PRISM — II

- *Explanation* of an answer: At a high level, the set of msw's used in a derivation of the answer.
- The probability of an explanation is the product of the probabilities of random variables in the explanation.
 - If the msw's in a derivation are all independent, then the probability of the explanation can be computed without materializing it.

[Independence assumption]

- The probability of an answer is the probability of the set of explanations of the answer.
 - If explanations are pairwise mutually exclusive, then the probability of the set of explanations is the sum of probabilities of each explanation.

[Mutual Exclusion assumption]

< 口 > < 同 >

• If the set of explanations is finite, then this sum can be effectively computed.

[Finiteness assumption]

ICLP 2013

15 / 41

A B A A B A

Inference Rules 00000000	Probabilistic LP 000000●	Inference for Model Checking	Probabilistic Model Checking
Generalizatio	ons		

• PRISM's inference procedure uses the Independence, Mutual Exclusion and Finiteness assumptions to compute probabilities of answers without materializing the explanations.

Inference Rules	Probabilistic LP 000000●	Inference for Model Checking	Probabilistic Model Checking
Generalizat	ions		

- PRISM's inference procedure uses the Independence, Mutual Exclusion and Finiteness assumptions to compute probabilities of answers without materializing the explanations.
 - Inference mimics the best known algorithms for certain statistical models (e.g. Viterbi alg. for HMMs).
- PRISM's inference procedure uses the Independence. Mutual Exclusion and Finiteness assumptions to compute probabilities of answers without materializing the explanations.
 - Inference mimics the best known algorithms for certain statistical models (e.g. Viterbi alg. for HMMs).
- ProbLog and PITA (an implementation of LPAD) use BDDs to represent the set of explanations, and consequently remove Independence and Mutual Exclusion assumptions.

・ロト ・ 同ト ・ ヨト ・ ヨ

- PRISM's inference procedure uses the Independence, Mutual Exclusion and Finiteness assumptions to compute probabilities of answers without materializing the explanations.
 - Inference mimics the best known algorithms for certain statistical models (e.g. Viterbi alg. for HMMs).
- ProbLog and PITA (an implementation of LPAD) use BDDs to represent the set of explanations, and consequently remove Independence and Mutual Exclusion assumptions.
 - Finiteness assumption is still needed since the BDDs need to be effectively constructed.

< ∃ > <

Probabilistic Systems

- System Definitions: Markov Chains (discrete- and continuous-time), Markov Decision Processes, Probabilistic Automata, recursive versions of some of the above, ...
- Property Specifications: PCTL, PCTL*, CSL, GPL, ...
- Systems: Prism, PreMo, UPPAAL-SMC, ...
- Systems have stochastic behavior
 - ... in contrast to *Statistical Model Checking* where statistical (sampling) techniques are used to infer properties of non-probabilistic systems (with confidence bounds).

イロト イ理ト イヨト イヨト

Probabilistic LP 0000000

Inference Rules

Inference for Model Checking

Probabilistic Model Checking

Probabilistic Transition Systems in PRISM

Example Markov Chain

< A

3 🕨 🖌 3

Probabilistic LP

Inference for Model Checking

Probabilistic Model Checking

Probabilistic Transition Systems in PRISM

Example Markov Chain

% Encoding as a Probabilistic LP
trans(S, I, T) :- msw(t(S), I, T).

% Ranges

- :- values(t(s0), [s0, s1, s2]).
- :- values(t(s1), [s1, s3, s4]).
- :- values(t(s4), [s3]).

% Distributions

set_sw(t(s0), [0.5, 0.3, 0.2]).
set_sw(t(s1), [0.4, 0.1, 0.5]).
set_sw(t(s4), [1]).

Image: Image:

ICLP 2013 18 / 41

→ ∃ →

Probabilistic Model Checking

Probabilistic Transition Systems in PRISM

Example Markov Chain

% Encoding as a Probabilistic LP
trans(S, I, T) :- msw(t(S), I, T).

% Encoding of Reachability
reach(S, I, T) : trans(S, I, U),
 reach(U, next(I), T).
reach(S, _, S).

3 ×

Inference RulesProbabilistic LP00000000000000000

Inference for Model Checking

Probabilistic Model Checking

Probabilistic Model Checking as Query Evaluation

• What is the probability of reaching s₃ via some path starting at s₀? Inference Rules Probabilistic LP

Inference for Model Checking

Probabilistic Model Checking

Probabilistic Model Checking as Query Evaluation

- What is the probability of reaching s₃ via some path starting at s₀?
- |?- prob(reach(s₀, 0, s₃)).

Inference Rules Pro

Probabilistic LP 0000000 Inference for Model Checking

Probabilistic Model Checking

Probabilistic Model Checking as Query Evaluation


```
trans(S, I, T) :-
    msw(t(S), I, T).
```

```
reach(S, I, T) :-
    trans(S, I, U),
    reach(U, next(I), T).
reach(S, _, S).
```

- What is the probability of reaching s₃ via some path starting at s₀?
- |?- prob(reach(s₀, 0, s₃)).
- Evaluation of the above query will not terminate!

Probabilistic LP

Inference for Model Checking

Probabilistic Model Checking

Probabilistic Model Checking as Query Evaluation


```
reach(S, I, T) :-
    trans(S, I, U),
    reach(U, next(I), T).
reach(S, _, S).
```

- What is the probability of reaching s₃ via some path starting at s₀?
- |?- prob(reach(*s*₀, 0, *s*₃)).
- Evaluation of the above query will not terminate!
 - There are infinitely many explanations for reach(s₀, 0, s₃)

Probabilistic LP 0000000 Inference for Model Checking

Probabilistic Model Checking

Probabilistic Model Checking as Query Evaluation


```
trans(S, I, T) :-
    msw(t(S), I, T).
```

```
reach(S, I, T) :-
    trans(S, I, U),
    reach(U, next(I), T).
reach(S, _, S).
```

- What is the probability of reaching s₃ via some path starting at s₀?
- |?- prob(reach(*s*₀, 0, *s*₃)).
- Evaluation of the above query will not terminate!
 - There are infinitely many explanations for reach(s₀, 0, s₃)
- Distribution semantics is well-defined and gives the correct probability, but

Image: A matrix

★ ∃ ▶ ★

Probabilistic LP 0000000 Inference for Model Checking

Probabilistic Model Checking

Probabilistic Model Checking as Query Evaluation


```
trans(S, I, T) :-
    msw(t(S), I, T).
```

```
reach(S, I, T) :-
    trans(S, I, U),
    reach(U, next(I), T).
reach(S, _, S).
```

- What is the probability of reaching s₃ via some path starting at s₀?
- |?- prob(reach(*s*₀, 0, *s*₃)).
- Evaluation of the above query will not terminate!
 - There are infinitely many explanations for reach(s₀, 0, s₃)
- Distribution semantics is well-defined and gives the correct probability, but
 - PRISM/ProbLog/PITA cannot evaluate this query.

A D > A A P >

→ ∃ →

Probabilistic LP 0000000 Inference for Model Checking

Probabilistic Model Checking

Probabilistic Model Checking as Query Evaluation


```
reach(S, I, T) :-
    trans(S, I, U),
    reach(U, next(I), T).
reach(S, _, S).
```

- What is the probability of reaching s₃ via some path starting at s₀?
- |?- prob(reach(s₀, 0, s₃)).
- Evaluation of the above query will not terminate!
 - There are infinitely many explanations for reach(s₀, 0, s₃)
- Distribution semantics is well-defined and gives the correct probability, but
 - PRISM/ProbLog/PITA cannot evaluate this query.
- "PIP" solves this problem [Gorlin, R. & Smolka, ICLP'12].

→ ∃ →

A D > A A P >

ICLP 2013 19 / 41

Inference Rules	Probabilistic LP	Inference for Model Checking	Probabilistic Model Checking
00000000	0000000	000●00000	

Explanations for reach(s0,0,s3):

- msw(t(s0), 0, s1), msw(t(s1), next(0), s3).
- msw(t(s0), 0, s0), msw(t(s0), next(0), s1), msw(t(s1), next(next(0)), s3).

• msw(t(s0), 0, s1), msw(t(s1), next(0), s1), msw(t(s1), next(next(0)), s3).

Inference Rules	Probabilistic LP	Inference for Model Checking	Probabilistic Model Checking
00000000	0000000	000●00000	

Note: prob(reach(s0,0,s3)) is same as prob(reach(s0,H,s3)) for any H.

.∃ >

Inference Rules 00000000	Probabilistic LP 0000000	Inference for Model Checking	Probabilistic Model Checking

Note: prob(reach(s0,0,s3)) is same as prob(reach(s0,H,s3)) for any H.

We can use a *grammar* to represent the set of explanations for the abstracted query.

Inference Rules	Probabilistic LP 0000000	Inference for Model Checking 000●00000	Probabilistic Model Checking

Note: prob(reach(s0,0,s3)) is same as prob(reach(s0,H,s3)) for any H.

We can use a *grammar* to represent the set of explanations for the abstracted query.

```
\begin{aligned} & \exp[(\operatorname{reach}(s0,H,s3)) \longrightarrow \\ & [\operatorname{msw}(t(s0),H,s0)], \\ & \exp[(\operatorname{reach}(s0,\operatorname{next}(H),s3)). \\ & \exp[(\operatorname{reach}(s0,H,s3)) \longrightarrow \\ & [\operatorname{msw}(t(s0),H,s1)], \\ & \exp[(\operatorname{reach}(s1,\operatorname{next}(H),s3)). \end{aligned}
```

).

Inference Rules	Probabilistic LP 0000000	Inference for Model Checking	Probabilistic Model Checking

 $\begin{aligned} & \exp[(\operatorname{reach}(s0, H, s3)) \longrightarrow \\ & [\operatorname{msw}(t(s0), H, s0)], \\ & \exp[(\operatorname{reach}(s0, \operatorname{next}(H), s3)). \\ & \exp[(\operatorname{reach}(s0, H, s3)) \longrightarrow \\ & [\operatorname{msw}(t(s0), H, s1)], \\ & \exp[(\operatorname{reach}(s1, \operatorname{next}(H), s3)). \end{aligned}$

is similar to the stochastic grammar:

$$\begin{array}{c} S_0 \xrightarrow{0.0}{\longrightarrow} S_0 \\ S_0 \xrightarrow{0.3}{\longrightarrow} S_1 \end{array}$$

whose probability is given by the least solution to the equation:

$$x_0 = 0.5x_0 + 0.3x_1$$

Probabilistic Model Checking

Temporally Well-Formed Programs

- A probabilistic logic program with annotations of the form temporal(p/n-i).
 - Example: temporal(reach/3-2)
 - reach is a *temporal* predicate
 - The second argument of an atom with root reach is its *instance argument*.
- For a rule defining a temporal predicate, the instance argument of the head must be a subterm of instance arguments of every temporal body predicate.
- Instance arguments are not bound to non-instance arguments, or vice versa.

イロト 不得下 イヨト イヨト

Probabilistic Model Checking

Temporally Well-Formed Programs

- A probabilistic logic program with annotations of the form temporal(p/n-i).
 - Example: temporal(reach/3-2)
 - reach is a *temporal* predicate
 - The second argument of an atom with root reach is its *instance argument*.
- For a rule defining a temporal predicate, the instance argument of the head must be a subterm of instance arguments of every temporal body predicate.
- Instance arguments are not bound to non-instance arguments, or vice versa.
- In explanation grammars of temporally well-formed programs, msw(r, t, x) will always be independent of any msw derived from non-terminal expl(p)
 - if t is a proper subterm of p's instance argument.

Probabilistic Model Checking

Factored Equation Diagrams

Not all explanation grammars can be translated directly to stochastic grammars.

- Consider the explanation grammar for query reach(s0, H, s3); reach(s0, H, s4).
- The grammar will have productions of the form: expl(reach(s0, H, s3); reach(s0, H, s4)) → expl(reach(s0, H, s3)).
 expl(reach(s0, H, s3); reach(s0, H, s4)) → expl(reach(s0, H, s4)).

< 口 > < 同 >

→ ∃ →

We can *factor* such grammars using Factored Explanation Diagrams (FEDs), which are similar to BDDs.

ICLP 2013 22 / 41

Inference for Model Checking

Probabilistic Model Checking

Structure of FEDs

FED is a labeled DAG with

- tt and ff as leaf nodes
- msw(r, h) is an n-ary node if r is a random process with n possible outcomes;

outgoing edges are labeled with the outcomes.

- expl(t, h) is a binary node;
 outgoing edges are labeled 0 and 1.
- If there is an edge from x_1 to x_2 , then $x_1 < x_2$ via a specially defined partial order relation.

Operations on FEDs

Boolean operations " \land " and " \lor " can be performed on FEDs along the same line as on BDDs, with one significant change:

- BDD operations are based on a *total* node order.
- We only have a partial node order for FEDs.
- When we recursively push operations down the diagram, we may encounter incomparable nodes.
- We then generate a placeholder merge node, and process merges separately.

イロト イ押ト イヨト イヨト

Operations on FEDs

Boolean operations " \land " and " \lor " can be performed on FEDs along the same line as on BDDs, with one significant change:

- BDD operations are based on a *total* node order.
- We only have a partial node order for FEDs.
- When we recursively push operations down the diagram, we may encounter incomparable nodes.
- We then generate a placeholder merge node, and process merges separately.
- Note that msw nodes are always comparable; so a merge will involve at least one expl node.
- We expand (one of) the expl node(s) with its definition, and perform the postponed operation.

ICLP 2013 24 / 41

(日) (周) (三) (三)

FEDs to Equations

The probability of a set of explanations is computed by generating and solving a set of equations from its FED.

A B F A B F

< 口 > < 同 >

FEDs to Equations

The probability of a set of explanations is computed by generating and solving a set of equations from its FED.

The least solution to these monotone polynomial equations gives the probability of the set of explanations.

C. R. Ramakrishnan

ICLP 2013 25 / 41

Probabilistic Computation Tree Logic (PCTL)

- PCTL is a logic for specifying properties of Probabilistic Transition Systems (Discrete-Time Markov Chains), where a subset of predefined *propositions*, *A*, hold at states.
- State formulas, φ , defined over individual states:

$$egin{array}{c|c|c|c|c|c|c|c|} A & \mid & \neg arphi & \mid & arphi_1 \wedge arphi_2 & \mid & arphi_1 \wedge arphi_2 \ Pr(\psi) > b & \mid & Pr(\psi) \geq b \end{array}$$

• Path formulas, ψ , defined over execution paths:

$$\phi_1 \ U \ \phi_2 \quad | \quad X \ \phi$$

- State formulas are non-probabilistic; path formulas have associated probabilities.
- Used as the property specification language by many systems, including the Prism Model Checker.

Inference Rules

ICLP 2013 26 / 41

Probabilistic Model Checking

Encoding the PCTL Model Checker

% State Formulae

```
models(S, prop(A)) :-
holds(S, A).
models(S, neg(SF)) :-
not models(S, SF).
models(S, and(SF1, SF2)) :-
models(S, SF1),
models(S, SF2).
models(S, pr(PF, gt, B)) :-
prob(pmodels(S, PF), P),
P > B.
models(S, pr(PF, geq, B)) :-
prob(pmodels(S, PF), P),
P >= B.
```

% Path Formulae

```
pmodels(S, PF) :-
    pmodels(S, PF, _).
```

```
:- table pmodels/3.
pmodels(S, until(SF1, SF2), H) :-
    models(S, SF2).
pmodels(S, until(SF1, SF2), H) :-
    models(S, SF1),
    trans(S, H, T),
    pmodels(T, until(SF1, SF2), next(H)).
pmodels(S, next(SF), H) :-
    trans(S, H, T),
    models(T, SF).
```

(日) (周) (三) (三)

```
temporal(pmodels/3-3).
```

Probabilistic LP 0000000 Inference for Model Checking

Probabilistic Model Checking

Prototype: PCTL Model Checking

5 processes:

- Time performance is compared with that of the Prism Model Checker.
- System specified using Prism's modeling language (Reactive Modues, RM).

Markov Chain derived from direct logical encoding of the semantics of RM.

- Chosen benchmark:
 - *System*: Synchronous Leader Election protocol
 - *Property*: "eventually a leader is elected" (reachability).
- Model checking times are within a factor of 3 (note log scale).

ICLP 2013 28 / 41

Probabilistic LP 0000000 Inference for Model Checking

Probabilistic Model Checking

Reactive Probabilistic Labeled Transition Systems (RPLTS)

Inference Rules

- Automata has finite number of states.
- Each state offers a finite number of *actions*, each with a distinct label.
- Each action has a *distribution* of states: taking an action chooses a destination state according to the given distribution.
- Actions are triggered by an external agent; the system *reacts* to actions.

[Cleaveland, Iyer & Narasimha, TCS'05]

ICLP 2013 29 / 41

- 4 3 6 4 3 6

ICLP 2013

30 / 41

Generalized Probabilistic Logic (GPL)

[Cleaveland, Iyer & Narasimha, TCS'05]

- An expressive, mu-calculus-based, logic for branching-time probabilistic processes.
- Strictly more expressive than PCTL*.
- Can be used to construct model checkers for recursive Markov Chains.
- Thus far, no model checker was available!!
- We can construct a model checker for GPL by directly encoding its semantics as a probabilistic logic program.

Inference Rules	Probabilistic LP 0000000	Inference for Model Checking	Probabilistic Model Checking
GPL			

- Usual mu-calculus-like modalities and fixed points (called "state formulae") in GPL.
- Fuzzy formulae, ψ , have a probabilistic interpretation: each formula's truth value has a probability associated with it.

$$\psi = \psi \lor \psi \mid \psi \land \psi \mid \langle \mathbf{a} \rangle \psi \mid [\mathbf{a}] \psi \mid \phi \mid X$$

• State formulae, ϕ , have a boolean interpretation:

$$\phi = \phi \lor \phi ~|~ \cdots ~|~ \operatorname{pr}^{>B} \psi ~|~ \operatorname{pr}^{\geq B} \psi ~|~ \cdots ~\operatorname{propositions} \ldots$$

• Alternation-free fixed point equations of the form $X =_{\mu} \psi$ and $X =_{\nu} \psi$.

GPL Model Checker

%% pmodels(S, PF, H): S is in the model of fuzzy formula PF at or after instant H %% smodels(S, SF): S is in the model of state formula SF

pmodels(S, sf(SF), H) :pmodels(S, form(X), H) :tabled_pmodels(S, X, H1), H=H1. smodels(S, SF). pmodels(S, and(F1,F2), H) :pmodels(S, F1, H), all_pmodels([], _, _, _H). all_pmodels([SW|Rest], S, F, H) :pmodels(S, F2, H). pmodels(S, or(F1,F2), H) :msw(SW, H, T), pmodels(S, F1, H); pmodels(T,F,[T,SW|H]), pmodels(S, F2, H). all_pmodels(Rest, S, F, H). pmodels(S, diam(A, F), H) :action(S, A, SW), :- table tabled_pmodels/3. msw(SW, H, T), tabled_pmodels(S,X,H) :pmodels(T, F, [T,SW|H]). fdef(X, lfp(F)), pmodels(S, box(A, F), H) :pmodels(S, F, H). findall(SW, action(S,A,SW), L), all_pmodels(L, S, F, H).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Probabilistic Model Checking

Recursive Markov Chains (RMCs)

Markov chains with calls and returns [Etessami & Yannakakis, 2005, ...]

• Probabilistic Push-Down Systems [Kucera, Esparza & Mayr, 2006]

• PreMo system [Wojtczak & Etessami, 2008]

Inference Rules

Reachability in RMCs

Transform into a Reactive Probabilistic LTS:

- Labels on probabilistic transitions are all *p* (omitted in figure).
- Check reachability using the following GPL formula:

 X_i : eventually exit ex_i is reached:

$$egin{array}{rcl} X_i &=_{\mu} & \langle e_i
angle ext{tt} & ee & \langle p
angle X_i \ & ee & (\langle c
angle X_1 \ \wedge \ \langle r_1
angle X_i) \ & ee & (\langle c
angle X_2 \ \wedge \ \langle r_2
angle X_i) \end{array}$$

Image: A matrix

E ▶.

★ ∃ ▶ ★

ICLP 2013

35 / 41

Markov Decision Processes (MDPs)

- MDP looks very similar to an RPLTS: actions on states that have a distribution of destination states.
- Semantics is different in two ways:
 - States have "rewards", and induce rewards on paths.
 - Schedulers dictate actions taken at each state.
- Interesting problem: find an *optimal* scheduler that maximizes the expected reward.
Committed Choice

- A scheduler commits an MDP to take a specific action at some point in its run.
- Analogous to msw in PRISM, we introduce nd(X, I, V) to choose from a set and commit to that choice.
 - X is a discrete-valued choice process
 - V is a value generated by the choice process
 - I is the *instance number*.
- Example: nd(s₂, 0, X) with values(s₂, [b,c]) will X to b in one set of worlds, and to c in another.
- Distribution semantics is naturally extended: the meaning of a program is a distribution of **sets of** models.

イロト イ押ト イヨト イヨト

Probabilistic Model Checking

Committed Choice (contd.)

- ?- prob(q(t), P).
- P = 0.3
- ;
- P = 0.6

- Probability of an answer is computed separately for each distinct set of committed choices.
- For recursive programs (MDPs), each set of committed choices will yield a set of linear equations, whose least solution will be the corresponding probability.
- Expected rewards can be computed analogously.
- We can find optimal probabilities (and, similarly, optimal expected reward) by pushing a max operation into the equations themselves.

ICLP 2013 37 / 41

Approximate Inference

Inference Rules

Current, Preliminary Work, on MCMC-based Sampling

- Monte-Chain Monte Carlo: walk though the possible worlds.
- Gibbs sampler: walk by resampling one of the random variables in the current state.
- In our case, we consider a **set** of possible worlds as a state in the Markov Chain. Naive method:
 - Generate a sample *derivation*. Its msws define a set of possible worlds.
 - Choose an msw and resample; find a derivation consistent with the new set of possible worlds.
 - The set of msws in the new derivation forms the next state in the chain.
- Using explanations instead of derivations makes this method more complex ([Moldovan et al, ECSQARU'13])

Probabilistic Model Checking

Approximate Inference for Conditional Queries

- Naive method: use Metropolis-Hastings and reject samples inconsistent with evidence.
- Better methods: Adapt sampling to not generate inconsistent examples in the first place.
 - Adapt msw distributions to minimize generation of samples inconsistent with evidence [e.g. Mansinghka '09].
 - Adapt the Markov Chain based on prior rejections to focus on consistent part of the state space [classical adaptive MCMC].

Inference Rules

.

Inference Rules

Probabilistic LP

Inference for Model Checking

Probabilistic Model Checking

.∃ >

ICLP 2013

40 / 41

Current and Future Work

Sampling-Based Inference Structure Learning (ILP) Different Forms of Uncertainty *Expectations* "Stratification" Decision Support / Planning

Statistical Model Checking

Probabilistic Tabled Logic Programming

Co-Authors

- Samik Basu
- Yifei Dong
- Vic Du
- Andrey Gorlin
- Md. Asiful Islam
- Narayan Kumar
- Giri Pemmasani
- Bob Pokorny
- Arun Nampally
- I. V. Ramakrishnan

- Y. S. Ramakrishna
- Abhik Roychoudhury
- Dipti Saha
- Beata Sarna-Starosta

A D > A A P >

- Anu Singh
- Scott Smolka
- Scott Stoller
- Terry Swift
- David Warren
- Ping Yang